Linux Capabilities and Namespaces

User Namespaces

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline
7 User Namespaces 7-1
7.1 Overview of user namespaces 7-3
7.2 Creating and joining a user NS 7-9
7.3 User namespaces: UID and GID mappings 7-17
7.4 User namespaces, execve(), and user ID 0 7-31
7.5 Accessing files; file-related capabilities 7-48
7.6 Security issues 7-55
7.7 Use cases 7-62

7.8 Combining user namespaces with other namespaces 7-68

Outline

7 User Namespaces 7-1
7.1 Overview of user namespaces 7-3
Preamble

@ For even more detail than presented here, see my articles:

e Namespaces in operation, part 5: user namespaces,
https://lwn.net/Articles /532593 /

o Namespaces in operation, part 6: more on user namespaces,
https://lwn.net/Articles /540087 /

o /\ See my notes in comments section for some updates

@ There is also a user_namespaces(7) man page

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-4 §7.1

Introduction

@ Milestone release: Linux 3.8 (Feb 2013)

e User NSs can now be created by unprivileged users...

@ Allow per-namespace mappings of UIDs and GIDs

e l.e., process's UIDs and GIDs inside NS may be different
from IDs outside NS

@ Interesting use case: process may have nonzero UID outside
NS, and UID of 0 inside NS
e = Process has root privileges for operations inside user NS
@ We revisit this point in a moment...

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-5 §7.1

Relationships between user namespaces

@ User NSs have a hierarchical relationship:
e A user NS can have 0 or more child user NSs
e Each user NS has parent NS, going back to initial user NS
o Initial user NS == sole user NS that exists at boot time

o Maximum nesting depth for user NSs is 32

e Parent of a user NS == user NS of process that created
this user NS using clone() or unshare()

@ Parental relationship determines some rules about operations
that can be performed on a (child) user NS (later...)

o joctl(fd, NS_GET_PARENT) can be used to discover
parental relationship

o Since Linux 4.9; see ioctl_ns(2) and
http://blog.man7.org/2016/12 /introspecting-namespace-relationships.html

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-6 §7.1

“Root privileges inside a user NS”

@ What does “root privileges in a user NS mean?

@ We've already seen that:
e There are a number of NS types

o Each NS type governs some global resource(s); e.g.:
@ UTS: hostname, NIS domain name

@ Mount: set of mount points

@ Network: IP routing tables, port numbers, /proc/net, ...

@ What we will see is that:

e There is an ownership relationship between user NSs and
non-user NSs

@ l.e., each non-user NS is “owned” by a particular user NS
o “root privileges in a user NS" == root privileges on (only)
resources governed by non-user NSs owned by this user NS

@ And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-7 §7.1

User namespaces “govern” other namespace types

Initial user namespace

creator eUID: 0
]

is owned b <
Y 4
cd by Child user namespace Initial UTS Initial network
is oWl creator eUID: 1000 namespace namespace
S d UTS e
[eeon J Tis member of o4
namespace Ao
v — . ' -
s 1 Process X <L o\

W~ | eUIDinsideNS:0 | .-
7| eUID in outer NS: 1000
capabilities: =ep

@ Understanding this picture is our ultimate goal...

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-8 §7.1

Outline

7 User Namespaces 7-1

7.2 Creating and joining a user NS 7-9

Creating and joining a user NS

@ New user NS is created with CLONE_NEWUSER flag

o clone() = child is made a member of new user NS
o unshare() = caller is made a member of new user NS

@ Can join an existing user NS using setns()
e Process must have CAP_SYS_ADMIN capability in target NS
@ (The capability requirement will become clearer later)

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-10 §7.2

User namespaces and capabilities

@ A process gains a full set of permitted and effective
capabilities in the new/target user NS when:

o It is the child of clone() that creates a new user NS
o It creates and joins a new user NS using unshare()
o It joins an existing user NS using setns()

@ But, process has no capabilities in parent/previous user NS
o /\ Even if it was root in that NS!

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-11 §7.2

Example: namespaces/demo_userns.c

./demo_userns

@ (Very) simple user NS demonstration program

@ Uses clone() to create child in new user NS
e Child displays its UID, GID, and capabilities

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-12 §7.2

Example: namespaces/demo_userns.c

#define STACK_SIZE (1024 * 1024)

int main(int argc, char x*argv[]) {

pid_t pid;

char *stack = mmap(NULL, STACK_SIZE,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK,
-1, 0);

pid = clone(childFunc, stack + STACK_SIZE,

CLONE_NEWUSER | SIGCHLD, argv[1]);

printf ("PID of child: %1ld\n", (long) pid);

waitpid (pid, NULL, 0);

exit (EXIT_SUCCESS);

@ Use clone() to create a child in a new user NS
o Child will execute childFunc(), with argument argv[1]

@ Printing PID of child is useful for some demos...

o Wait for child to terminate

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-13 §7.2

Example: namespaces/demo_userns.c

static int childFunc(void *arg) {
cap_t caps;
char *str;

for (;;) {
printf ("eUID = %1d; eGID %1d; ",
(long) geteuid (), (long) getegid());
caps = cap_get_proc();
str = cap_to_text(caps, NULL);
printf ("capabilities: %s\n", str);
cap_free(caps);
cap_free(str);

if (arg == NULL) break;
sleep (5);
}

return O;

@ Display PID, effective UID + GID, and capabilities
o If arg (argv[1]) was NULL, break out of loop

@ Otherwise, redisplay IDs and capabilities every 5 seconds

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-14 §7.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000

$./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Upon running the program, we'll see something like the above
@ Program was run from unprivileged user account

@ =ep means child process has a full set of permitted and
effective capabilities

o If libcap is not aware of all capability numbers supported by
kernel, displayed capability sets may be more verbose

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-15 §7.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000

$./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Displayed UID and GID are “strange”

@ System calls such as geteuid() and getegid() always return
credentials as they appear inside user NS where caller resides

@ But, no mapping has yet been defined to map IDs outside
user NS to IDs inside NS

@ = when a UID is unmapped, system calls return value in
/proc/sys/kernel/overflowuid (default value: 65534)

e Unmapped GIDs = /proc/sys/kernel/overflowgid

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-16 §7.2

Outline

7 User Namespaces 7-1

7.3 User namespaces: UID and GID mappings 7-17

UID and GID mappings

@ One of first steps after creating a user NS is to define UID
and GID mapping for NS

@ Mappings for a user NS are defined by writing to 2 files:
/proc/PID/uid_map and /proc/PID/gid_map
e Each process in user NS has these files; writing to files of
any process in the user NS suffices

o Initially, these files are empty

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-18 §7.3

UID and GID mappings

@ Records written to/read from uid_map and gid _map have
this form:

ID-inside -ns ID-outside -ns length

o ID-inside-ns and length define range of IDs inside user NS
that are to be mapped

o [D-outside-ns defines start of corresponding mapped range
in “outside” user NS

e E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS

0 1000 10

e /\ To properly understand ID-outside-ns, we must first look
at a picture

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-19 §7.3

Understanding UID and GID maps

Initial user NS

1000 1009 1014 1020 1029
® ChildNS1 ° >0 Child NS 2 o4 ® ChildNS4 °
Map: 0 1000 10 Map: 50 1000 15 Map: 0 1020 10
T
1 1
9
ChildNS3
Map: 10 50 10

@ "What does ID X in namespace Y map to in namespace Z?" means
“what is the equivalent ID (if any) in namespace Z?”

@ What do IDs 0 and 5 in NS 1 map to in each of the other NSs?
@ What does ID 15 in NS 3 map to in each of the other NSs?
@ What does ID 64 in NS 2 map to in NS 37

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-20 §7.3

Interpretation of ID-outside-ns

o /\ Interpretation of /D-outside-ns depends on whether
process opening uid_map/gid_map is in same NS as PID

o NB: contents of uid_map/gid_map are generated on the fly
by the kernel, and can be different in different processes

o If “opener” and PID are in same user NS:
o ID-outside-ns interpreted as ID in parent user NS of P/ID

o Common case: process is writing its own mapping file

o If “opener” and PID are in different user NSs:
o ID-outside-ns interpreted as ID in opener’s user NS

o Equivalent to previous case, if “opener” is (parent) process
that created user NS using clone()

@ (Above rules make sense, when we consider how these two
cases could be rationally conceived)

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-21 §7.3

Quiz: reading /proc/PID/uid_map

[Initial user NS }

Child user NS Child user NS
uid_map: 200 1000 1 uid_map: 0 1000 1
Contains PID 2366 Contains PID 2571

@ If PID 2366 reads /proc/2571/uid_map, what should it see?
e 0 200 1

@ If PID 2571 reads /proc/2366/uid_map, what should it see?
e 200 0 1

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-22 §7.3

Example: updating a mapping file

@ Let's run demo userns with an argument, so it loops:

$ id -u # Display user ID of shell
1000

$ id -G # Display group IDs of shell
1000 10

$./demo_userns x
PID of child: 2810
eUID = 65534; eGID = 65534; capabilities: =ep

@ Then we switch to another terminal window (i.e., a shell
process in parent user NS), and write a UID mapping:

echo ’0 1000 1’ > /proc/2810/uid_map

@ Returning to window where we ran demo_userns, we see:

eUID = 0; eGID = 65534; capabilities: =ep

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-23 §7.3

Example: updating a mapping file

e But, if we go back to second terminal window, to create a
GID mapping, we encounter a problem:

$ echo ’0 1000 1’ > /proc/2810/gid_map
bash: echo: write error: Operation not permitted

@ There are (many) rules governing updates to mapping
files

o Inside the new user NS, user is getting full capabilities

o It is critical that capabilities can’t leak

@ l.e., user must not get more permissions than they would
otherwise have outside the namespace

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-24 §7.3

Validity requirements for updating mapping files

If any of these rules are violated, write() fails with EINVAL:

@ There is a limit on the number of lines that may be written
e Linux 4.14 and earlier: between 1 and 5 lines
@ An arbitrarily chosen limit that was expected to suffice

@ 5 * 12-byte records: small enough to fit in a 64B cache line

e Since Linux 4.15: between 1 and 340 lines
@ The limit of 5 was in a few cases becoming a hindrance

@ 340 * 12-byte records: can fit in 4KiB

@ Each line contains 3 valid numbers, with length > 0, and a
newline terminator

@ The ID ranges specified by the lines may not overlap

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-25 §7.3

Permission rules for updating mapping files

Violation of any of these “permission” rules when updating
uid_map and gid_map files results in EPERM:

@ Each map may be updated only once
@ Writer must be in target user NS or in parent user NS
@ The mapped IDs must have a mapping in parent user NS

@ Writer must have following capability in target user NS
e CAP_SETUID for uid_map

e CAP_SETGID for gid_map

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-26 §7.3

Permission rules for updating mapping files

As well as preceding rules, one of the following also applies:
o Either: writer has CAP_SETUID (for uid_map) or
CAP_SETGID (for gid_map) capability in parent user NS:
o = no further restrictions apply (more than one line may be
written, and arbitrary UIDs/GIDs may be mapped)
@ Or: otherwise, all of the following restrictions apply:
o Only a single line may be written to uid_map (gid_map)

o That line maps only the writer's eUID (eGID)

@ Usual case: we are writing a mapping for eUID/eGID of
process that created the NS

o eUID of writer must match eUID of creator of NS
o (eUID restriction also applies for gid_map)

e For gid_map only: corresponding /proc/PID/setgroups
file must have been previously updated with string “deny”

@ We revisit reasons later

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-27 §7.3

Example: updating a mapping file

@ Going back to our earlier example:

$ echo ’0 1000 1’ > /proc/2810/gid_map
bash: echo: write error: Operation not permitted
$ echo ’deny’ > /proc/2810/setgroups
$ echo ’0 1000 1’ > /proc/2810/gid_map
$ cat /proc/2810/gid_map
0 1000 1

o After writing “deny” to /proc/PID/setgroups file, we can
update gid_map

@ Upon returning to window running demo userns, we see:

eUID = 0; eGID = 0; capabilities: =ep

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-28 §7.3

