
Linux Capabilities and Namespaces

User Namespaces

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline

7 User Namespaces 7-1
7.1 Overview of user namespaces 7-3
7.2 Creating and joining a user NS 7-9
7.3 User namespaces: UID and GID mappings 7-17
7.4 User namespaces, execve(), and user ID 0 7-31
7.5 Accessing files; file-related capabilities 7-48
7.6 Security issues 7-55
7.7 Use cases 7-62
7.8 Combining user namespaces with other namespaces 7-68

Outline

7 User Namespaces 7-1
7.1 Overview of user namespaces 7-3
7.2 Creating and joining a user NS 7-9
7.3 User namespaces: UID and GID mappings 7-17
7.4 User namespaces, execve(), and user ID 0 7-31
7.5 Accessing files; file-related capabilities 7-48
7.6 Security issues 7-55
7.7 Use cases 7-62
7.8 Combining user namespaces with other namespaces 7-68

Preamble

For even more detail than presented here, see my articles:
Namespaces in operation, part 5: user namespaces,
https://lwn.net/Articles/532593/
Namespaces in operation, part 6: more on user namespaces,
https://lwn.net/Articles/540087/
� See my notes in comments section for some updates

There is also a user_namespaces(7) man page

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-4 §7.1

Introduction

Milestone release: Linux 3.8 (Feb 2013)
User NSs can now be created by unprivileged users...

Allow per-namespace mappings of UIDs and GIDs
I.e., process’s UIDs and GIDs inside NS may be different
from IDs outside NS

Interesting use case: process may have nonzero UID outside
NS, and UID of 0 inside NS

⇒ Process has root privileges for operations inside user NS
We revisit this point in a moment...

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-5 §7.1

Relationships between user namespaces

User NSs have a hierarchical relationship:
A user NS can have 0 or more child user NSs
Each user NS has parent NS, going back to initial user NS

Initial user NS == sole user NS that exists at boot time
Maximum nesting depth for user NSs is 32
Parent of a user NS == user NS of process that created
this user NS using clone() or unshare()

Parental relationship determines some rules about operations
that can be performed on a (child) user NS (later...)
ioctl(fd, NS_GET_PARENT) can be used to discover
parental relationship

Since Linux 4.9; see ioctl_ns(2) and
http://blog.man7.org/2016/12/introspecting-namespace-relationships.html

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-6 §7.1

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?
We’ve already seen that:

There are a number of NS types
Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name
Mount: set of mount points
Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:
There is an ownership relationship between user NSs and
non-user NSs

I.e., each non-user NS is “owned” by a particular user NS
“root privileges in a user NS” == root privileges on (only)
resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-7 §7.1

User namespaces “govern” other namespace types

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Understanding this picture is our ultimate goal...

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-8 §7.1

Outline

7 User Namespaces 7-1
7.1 Overview of user namespaces 7-3
7.2 Creating and joining a user NS 7-9
7.3 User namespaces: UID and GID mappings 7-17
7.4 User namespaces, execve(), and user ID 0 7-31
7.5 Accessing files; file-related capabilities 7-48
7.6 Security issues 7-55
7.7 Use cases 7-62
7.8 Combining user namespaces with other namespaces 7-68

Creating and joining a user NS

New user NS is created with CLONE_NEWUSER flag
clone() ⇒ child is made a member of new user NS
unshare() ⇒ caller is made a member of new user NS

Can join an existing user NS using setns()
Process must have CAP_SYS_ADMIN capability in target NS

(The capability requirement will become clearer later)

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-10 §7.2

User namespaces and capabilities

A process gains a full set of permitted and effective
capabilities in the new/target user NS when:

It is the child of clone() that creates a new user NS
It creates and joins a new user NS using unshare()
It joins an existing user NS using setns()

But, process has no capabilities in parent/previous user NS
� Even if it was root in that NS!

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-11 §7.2

Example: namespaces/demo_userns.c

./ demo_userns

(Very) simple user NS demonstration program
Uses clone() to create child in new user NS
Child displays its UID, GID, and capabilities

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-12 §7.2

Example: namespaces/demo_userns.c

define STACK_SIZE (1024 * 1024)

int main(int argc , char *argv []) {
pid_t pid;
char *stack = mmap(NULL , STACK_SIZE ,

PROT_READ | PROT_WRITE ,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK ,
-1, 0);

pid = clone(childFunc , stack + STACK_SIZE ,
CLONE_NEWUSER | SIGCHLD , argv [1]);

printf ("PID of child: %ld\n", (long) pid);
waitpid (pid , NULL , 0);
exit(EXIT_SUCCESS);

}

Use clone() to create a child in a new user NS
Child will execute childFunc(), with argument argv[1]

Printing PID of child is useful for some demos...
Wait for child to terminate

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-13 §7.2

Example: namespaces/demo_userns.c

static int childFunc (void *arg) {
cap_t caps;
char *str;

for (;;) {
printf ("eUID = %ld; eGID = %ld; ",

(long) geteuid (), (long) getegid ());
caps = cap_get_proc ();
str = cap_to_text (caps , NULL);
printf (" capabilities : %s\n", str);
cap_free (caps);
cap_free (str);

if (arg == NULL) break;
sleep (5);

}
return 0;

}

Display PID, effective UID + GID, and capabilities
If arg (argv[1]) was NULL, break out of loop
Otherwise, redisplay IDs and capabilities every 5 seconds

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-14 §7.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$./ demo_userns
eUID = 65534; eGID = 65534; capabilities : =ep

Upon running the program, we’ll see something like the above
Program was run from unprivileged user account
=ep means child process has a full set of permitted and
effective capabilities

If libcap is not aware of all capability numbers supported by
kernel, displayed capability sets may be more verbose

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-15 §7.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$./ demo_userns
eUID = 65534; eGID = 65534 ; capabilities : =ep

Displayed UID and GID are “strange”
System calls such as geteuid() and getegid() always return
credentials as they appear inside user NS where caller resides
But, no mapping has yet been defined to map IDs outside
user NS to IDs inside NS
⇒ when a UID is unmapped, system calls return value in
/proc/sys/kernel/overflowuid (default value: 65534)

Unmapped GIDs ⇒ /proc/sys/kernel/overflowgid

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-16 §7.2

Outline

7 User Namespaces 7-1
7.1 Overview of user namespaces 7-3
7.2 Creating and joining a user NS 7-9
7.3 User namespaces: UID and GID mappings 7-17
7.4 User namespaces, execve(), and user ID 0 7-31
7.5 Accessing files; file-related capabilities 7-48
7.6 Security issues 7-55
7.7 Use cases 7-62
7.8 Combining user namespaces with other namespaces 7-68

UID and GID mappings

One of first steps after creating a user NS is to define UID
and GID mapping for NS
Mappings for a user NS are defined by writing to 2 files:
/proc/PID/uid_map and /proc/PID/gid_map

Each process in user NS has these files; writing to files of
any process in the user NS suffices
Initially, these files are empty

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-18 §7.3

UID and GID mappings

Records written to/read from uid_map and gid_map have
this form:
ID -inside -ns ID -outside -ns length

ID-inside-ns and length define range of IDs inside user NS
that are to be mapped
ID-outside-ns defines start of corresponding mapped range
in “outside” user NS

E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS
0 1000 10

� To properly understand ID-outside-ns, we must first look
at a picture

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-19 §7.3

Understanding UID and GID maps

Initial user NS

1000 1009 1014 1020 1029

Child NS 2

Map: 50 1000 15

50 64

Child NS 1

Map: 0 1000 10

0 9

Child NS 4

Map: 0 1020 10

0 9

Child NS 3

Map: 10 50 10

0 9

10 19

”What does ID X in namespace Y map to in namespace Z?” means
“what is the equivalent ID (if any) in namespace Z?”
What do IDs 0 and 5 in NS 1 map to in each of the other NSs?
What does ID 15 in NS 3 map to in each of the other NSs?
What does ID 64 in NS 2 map to in NS 3?

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-20 §7.3

Interpretation of ID-outside-ns

� Interpretation of ID-outside-ns depends on whether
process opening uid_map/gid_map is in same NS as PID

NB: contents of uid_map/gid_map are generated on the fly
by the kernel, and can be different in different processes

If “opener” and PID are in same user NS:
ID-outside-ns interpreted as ID in parent user NS of PID
Common case: process is writing its own mapping file

If “opener” and PID are in different user NSs:
ID-outside-ns interpreted as ID in opener’s user NS
Equivalent to previous case, if “opener” is (parent) process
that created user NS using clone()

(Above rules make sense, when we consider how these two
cases could be rationally conceived)

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-21 §7.3

Quiz: reading /proc/PID/uid_map

Initial user NS

Child user NS

uid_map: 200 1000 1

Contains PID 2366

Child user NS

uid_map: 0 1000 1

Contains PID 2571

If PID 2366 reads /proc/2571/uid_map, what should it see?

0 200 1

If PID 2571 reads /proc/2366/uid_map, what should it see?

200 0 1

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-22 §7.3

Example: updating a mapping file

Let’s run demo_userns with an argument, so it loops:
$ id -u # Display user ID of shell
1000
$ id -G # Display group IDs of shell
1000 10
$./ demo_userns x
PID of child: 2810
eUID = 65534; eGID = 65534; capabilities : =ep

Then we switch to another terminal window (i.e., a shell
process in parent user NS), and write a UID mapping:
echo ’0 1000 1’ > /proc /2810/ uid_map

Returning to window where we ran demo_userns, we see:
eUID = 0; eGID = 65534; capabilities : =ep

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-23 §7.3

Example: updating a mapping file

But, if we go back to second terminal window, to create a
GID mapping, we encounter a problem:
$ echo ’0 1000 1’ > /proc /2810/ gid_map
bash: echo: write error: Operation not permitted

There are (many) rules governing updates to mapping
files

Inside the new user NS, user is getting full capabilities
It is critical that capabilities can’t leak

I.e., user must not get more permissions than they would
otherwise have outside the namespace

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-24 §7.3

Validity requirements for updating mapping files

If any of these rules are violated, write() fails with EINVAL:
There is a limit on the number of lines that may be written

Linux 4.14 and earlier: between 1 and 5 lines
An arbitrarily chosen limit that was expected to suffice
5 * 12-byte records: small enough to fit in a 64B cache line

Since Linux 4.15: between 1 and 340 lines
The limit of 5 was in a few cases becoming a hindrance
340 * 12-byte records: can fit in 4KiB

Each line contains 3 valid numbers, with length > 0, and a
newline terminator
The ID ranges specified by the lines may not overlap

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-25 §7.3

Permission rules for updating mapping files

Violation of any of these “permission” rules when updating
uid_map and gid_map files results in EPERM:

Each map may be updated only once
Writer must be in target user NS or in parent user NS
The mapped IDs must have a mapping in parent user NS
Writer must have following capability in target user NS

CAP_SETUID for uid_map
CAP_SETGID for gid_map

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-26 §7.3

Permission rules for updating mapping files

As well as preceding rules, one of the following also applies:
Either: writer has CAP_SETUID (for uid_map) or
CAP_SETGID (for gid_map) capability in parent user NS:

⇒ no further restrictions apply (more than one line may be
written, and arbitrary UIDs/GIDs may be mapped)

Or: otherwise, all of the following restrictions apply:
Only a single line may be written to uid_map (gid_map)
That line maps only the writer’s eUID (eGID)

Usual case: we are writing a mapping for eUID/eGID of
process that created the NS

eUID of writer must match eUID of creator of NS
(eUID restriction also applies for gid_map)

For gid_map only: corresponding /proc/PID/setgroups
file must have been previously updated with string “deny”

We revisit reasons later

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-27 §7.3

Example: updating a mapping file

Going back to our earlier example:
$ echo ’0 1000 1’ > /proc /2810/ gid_map
bash: echo: write error: Operation not permitted
$ echo ’deny ’ > /proc /2810/ setgroups
$ echo ’0 1000 1’ > /proc /2810/ gid_map
$ cat /proc /2810/ gid_map

0 1000 1

After writing “deny” to /proc/PID/setgroups file, we can
update gid_map

Upon returning to window running demo_userns, we see:
eUID = 0; eGID = 0; capabilities : =ep

Linux Capabilities and Namespaces ©2020, Michael Kerrisk User Namespaces 7-28 §7.3

