Linux/UNIX IPC Programming

Alternative |/O Models

Michael Kerrisk, man7.org © 2020

mtk@man7.org

February 2020

Outline

7 Alternative /O Models

7.1 Overview

7.2 Nonblocking 1/0

7.3 Signal-driven 1/0

7.4 1/0 multiplexing: poll()

7.5 Problems with poll() and select()
7.6 The epoll API

7.7 epoll events

7.8 epoll: edge-triggered notification
7.9 epoll: API quirks

7.10 Event-loop programming

7-1

7-3

7-5
7-11
7-14
7-31
7-34
7-45
7-59
7-70
7-76

Outline

7 Alternative 1/O Models 7-1
7.1 Overview 7-3

The traditional file I/O model

@ 1/0O on one file at a time
o read(), write(), etc. operate on single descriptor
e Blocking 1/0
o 1/0 not possible = call blocks until /O becomes possible

o Examples:
o write() to pipe blocks if insufficient space

o read() from socket that has no data available

@ But sometimes, we want to:
o Check if 1/0 is possible without blocking if it is not

o Monitor multiple file descriptors to see if |/O is possible
on any of them

[TLPI §63.1]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-4 §7.1

Outline

7 Alternative 1/0O Models

7.2 Nonblocking 1/0

7-1

7-5

Nonblocking |/O

@ Nonblocking 1/O = return error instead of blocking
o EAGAIN error for read(), write(), and similar

@ Enabled via 0_NONBLOCK file status flag
o Set during open(); can also be enabled via fentl():

flags = fcntl(fd, F_GETFL);
flags |= O_NONBLOCK;
fcntl(fd, F_SETFL, flags);

o Recall: file status flags reside in open file description

@ Many APIs that create FDs also have a flag that allows
nonblocking mode to be set at time FD is created

o E.g., eventfd(), inotify_initl(), open(), pipe2(), signalfd(),

socket(), timerfd_create()

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-6

§7.2

EAGAIN vs EWOULDBLOCK

e On BSD, EWOULDBLOCK was/is returned instead of EAGAIN

@ Many modern systems address this portability issue by
making EAGAIN and EWOULDBLOCK synonyms

o POSIX explicitly permits this

e Linux does this

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-7 §7.2

Use cases for nonblocking |/O

@ Check if 1/0 is possible without blocking if not (“polling”)

e Mark file descriptor nonblocking
o Perform 1/0O system call
o If 1/O call fails, try again later

@ Perform as much |/O as possible, without blocking on
completion

e Mark file descriptor nonblocking
o Perform /O in a loop until EAGAIN encountered
@ Nonblocking accept()

o Make listening socket nonblocking

o = accept() returns with EAGAIN/EWOULDBLOCK if no
pending connection

@ We'll see some other valid use cases for nonblocking |/O
o E.g., I/O while employing edge-triggered epoll notification

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-8 §7.2

Problems with nonblocking |/0

@ Using nonblocking 1/0 for repeatedly polling multiple file
descriptors is problematic

o Frequent polling = CPU cycles wasted
o Infrequent polling = high 1/O latency

@ We need better techniques...

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 79 §7.2

Better techniques for managing multiple file descriptors

e poll(), select() (“1/O multiplexing”):

o Simultaneously monitor multiple FDs to see if 1/0 is
possible on any of them

e Signal-driven 1/0:
o Kernel sends process a signal when 1/0 is possible on FD
o Better performance than select() / poll()

o epoll.
o Monitor multiple FDs (like select() / poll())

o Better performance and more features than select() / poll()
o Simpler to program than signal-driven 1/0
o Linux-specific (since kernel 2.6.0)

@ Above techniques only monitor FDs to see if 1/O is possible
o Actual 1/0 is performed using traditional system calls

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-10 §7.2

Outline

7 Alternative 1/O Models 7-1

7.3 Signal-driven 1/0 7-11

Signal-driven 1/0

@ Somewhat portable technique for monitoring multiple FDs

@ Process performs following steps:
o Establish signal handler (default notification signal is
SIGIO)

o Mark itself as "owner” of FD (process that is to receive
signals)
o fentl(fd, F_SETOWN, pid) operation

o Enable signaling when 1/0O is possible on FD
o Set 0_ASYNC flag using fentl(fd, F_SETFL, flags)

e Carry on to do other tasks
o When /O becomes possible, signal handler is invoked
@ Can enable 1/0 signaling on multiple FDs

o Better performance than poll()/select()
o (For same reasons as epoll, as explained later)
[TLPI §63.3]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-12 §7.3

Signal-driven 1/0

o Fully exploiting signal-driven |/O requires use of
Linux-specific features
o Choosing (realtime) signal via fentl(fd, F_SETSIG, sig)

o Default signal (SIGIO) is a nonqueuing traditional signal
o Use SA_SIGINFO handler

@ = obtain file descriptor via si_fd field of siginfo_t structure

o epoll APl is more feature-rich for task of monitoring
multiple FDs
e = We'll ignore signal-driven 1/0
o (See TLPI §63.3 for more info + example program)

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-13 §7.3

Outline

7 Alternative 1/O Models 7-1

7.4 1/0 multiplexing: poll() 7-14

1/O multiplexing

@ Monitor multiple file descriptors to see if 1/O is possible on
any of them

@ Terminology: the FD is “ready” for |/O
o Often, we'll talk of monitoring /O events, but...

o Strictly speaking, these APIs tell us whether an 1/0
system call would block

@ Two traditional techniques:
o select() (4.2BSD, 1983)

o poll() (System V Release 3, 1986)
o Both specified in POSIX and widely available

@ Can be applied to any file type
e Pipes, FIFOs, terminals, devices, sockets...

e Applicable to regular files, but not very useful

[TLPI §63.2]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-16 §7.4

poll() and select()

o select() and poll() perform same task

@ Differ primarily in how FDs are specified:
o select():

@ Arguments: 3 FD sets for 3 classes of readiness

@ Each FD set contains a set of FDs

o poll():

o Argument: list (array) of file descriptors

e Each array element specifies type of readiness to test

[TLPI §63.2.2]
Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-17 §7.4
Arguments of poll() and select()
select()
poli() pollfds[] FD# 0 1 2 88 1023
fd events revents readfds | x X
0 POLLIN
POLLOUT writefds X
88 | POLLIN
T T exceptfds
input output T
value value in/out
arguments
Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-18 §7.4

poll() vs select()

@ poll() fixes some of the API problems of select()
o select() uses fixed-size FD sets
@ Only FDs < 1024 can be monitored

e Limitation of glibc, not kernel

o select() uses same arguments for input and output
o (Must reinitialize on each call inside a loop)

o = We'll focus on poll()

[TLPI §63.2.2]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-19 §7.4

poll()

#include <poll.h>
int poll(struct pollfd fds[], nfds_t nfds, int timeout);

@ fds: list of file descriptors to be monitored
@ nfds: number of elements in fds

@ timeout: timeout if call blocks because no FD is yet ready

for 1/0

[TLPI §63.2.2]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-20 §7.4

The pollfd array

struct pollfd {

int fd; /* File descriptor */
short events; /* Requested events bit mask */
short revents; /* Returned events bit mask */
};
@ fds argument to poll() is list of file descriptors to monitor
@ For each list element:
e events: bit mask of events to monitor for fd
e Input value, initialized by caller
e revents: returned bit mask of events that occurred for fd
@ Output value, set by kernel
Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-21 §7.4

poll() events bits

Bit Input in | Qutput in Description
events? | revents?
POLLIN ° ° Normal-priority data can be read
POLLPRI . . nghjp_rlorlty data/exceptional
condition
POLLRDHUP ° Shutdown on peer socket
POLLOUT] Data can be written
POLLERR ° An error has occurred
POLLHUP ° A hangup occurred
POLLNVAL ° File descriptor is not open

@ POLLIN, POLLPRI, and POLLRDHUP indicate input events

@ POLLOUT indicates an output event

@ POLLERR, POLLHUP, and POLLNVAL are returned in revents to provide
additional info about FD

o lgnored if specified in events

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-22 §7.4

poll() events bits

A few poll() events bits need some explanation:
@ POLLPRI:
e State change on pseudoterminal master in packet mode

o Qut-of-band data on stream socket
o (Rarely used)

@ POLLHUP:
o Returned on read end of pipe/FIFO if write end is closed

@ POLLERR:
o Returned on write end of pipe/FIFO if read end is closed

@ POLLRDHUP:
o Stream socket peer has closed (writing half of) connection

e Linux-specific, since kernel 2.6.17
o Useful with epoll edge-triggered mode (see epoll_ctl(2))

@ POSIX is vague on specifics; details vary across systems
[TLPI §63.2.3]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-23 §7.4

poll() timeout

@ timeout determines blocking behavior of poll():
e -1: block indefinitely

o 0: don't block (“poll” current state of descriptors)
e > 0: block for up to timeout milliseconds

@ When blocking, poll() waits until either:
o A file descriptor becomes ready

o A signal handler interrupts the call

e The timeout is reached

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-24 §7.4

poll() return value

Return value from poll() is one of:
@ > 0: number of ready FDs

o l.e., number of elements in pollfd array that have
revents I= 0

e 0: poll() timed out without any FD becoming ready

@ -1: error

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-25 §7.4

Example: altio/poll pipes.c

./poll_pipes num-pipes [num-writes]

@ Create num-pipes pipes

@ Loop num-writes times, each time writing a single byte to
the write end of a randomly selected pipe

e Employ poll() to monitor all of the pipe read ends to see
which pipes are readable

@ Scan the pollfd array returned by poll() and print list of
readable pipes

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-26 §7.4

Example: altio/poll pipes.c

1| int numPipes, ready, randPipe, numWrites, j;
2| struct pollfd *pollFd;
3| int (*pfds) [2]; /* File descriptors for all pipes */
4
5| numPipes = getInt(argv[1], GN_GT_O, "num-pipes");
6| numWrites = (argc > 2) 7
7 getInt (argv[2], GN_GT_O, "num-writes") : 1;
8
9| pfds = calloc(numPipes, sizeof (int [2]));
10| pollFd = calloc(numPipes, sizeof (struct pollfd));
@ Because number of pipes is selected at run-time, we must
allocate structures at run time
o getint() converts string to integer
@ Allocate array for pipe pairs
o calloc() == malloc(nmemb * size), and also zeroes memory
o Allocate pollfd array
Linux/UNIX IPC Programming ©2020, Michael Kerrisk ~ Alternative |/O Models 7-27 §7.4

Example: altio/poll pipes.c

1| for (j = 0; j < numPipes; j++)

2 pipe (pfds[jl);

3

4| srandom ((int) time (NULL)); /* Seed RNG */

5| for (j = 0; j < numWrites; j++) {

6 randPipe = random() % numPipes;

7 printf ("Writing to fd: %3d (read fd: %3d)\n",
8 pfds [randPipe] [1], pfds[randPipe][0]);
9 write (pfds[randPipe] [1], "a", 1);

10| ¥

@ Create pipe pairs
@ Loop num-writes times, writing a byte to a randomly
selected pipe
e Display FD for write and read end of pipe

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-28 §7.4

Example: altio/poll pipes.c

for (j = 0; j < numPipes; j++) {
pollFd[j].fd = pfds[jIl[0];
pollFd[j].events = POLLIN;

ready = poll(pollFd, numPipes, 0);
printf ("poll () returned: %d\n", ready);
for (j = 0; j < numPipes; j++)

if (pollFd[j].revents & POLLIN)
printf ("Readable: %3d\n", pollFd[j].fd);

P OWOWONOOIPdWN -

e

@ Build pollfd array containing all pipe read ends
o Monitor to see if input is possible (POLLIN)

o Call poll() with zero timeout
@ Return value from poll() is number of ready FDs

@ Walk through revents fields in pollfd array, to see which FDs
are ready for reading

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-29 §7.4

Exercise

@ Write a program ([template: altio/ex.poll_pipes_write.c]) that has the
following command-line syntax:

./poll_pipes_write num-pipes [num-writes [block-sizell]

The program should create num-pipes pipes, and make the write ends of each pipe
nonblocking (set the 0_NONBLOCK flag with fent/(F_SETFL); see slide 7-6).

The program should then loop num-writes (default: 1) times, each time writing
block-size (arbitrary) bytes (default: 100) to a randomly selected pipe. During the
loop, the program should count the number of writes that failed because the pipe
was full (write() failed with EAGAIN in errno) and the number of partial writes
(write() wrote fewer bytes than requested).

After the above loop completes, the program should employ a (nonblocking) poll()
call to monitor all of the pipe write ends to see which pipes are still writable, and
then report the following:

@ A list of the pipes that are writable
@ The total number of partial writes
@ The total number of times that write() failed with EAGAIN

Vary the command-line arguments until you see instances of EAGAIN errors and
partial writes. Can you discover any rule about the minimum block-size needed in
order to see partial writes?

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-30 §7.4

Outline

7 Alternative 1/O Models 7-1

7.5 Problems with poll() and select() 7-31

Problems with poll() and select()

@ poll() + select() are portable, long-standing, and widely used
@ But, there are scalability problems when monitoring many
FDs, because, on each call:

@ Program passes a data structure to kernel describing all
FDs to be monitored

@ The kernel must recheck all specified FDs for readiness

e This includes hooking (and subsequently unhooking) all
FDs to handle case where it is necessary to block

© The kernel passes a modified data structure describing
readiness of all FDs back to program in user space

Q After the call, the program must inspect readiness state of
all FDs in modified data

@ = Cost of select() and poll() scales with number of FDs
being monitored

[TLPI §63.2.5]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-32 §7.5

Problems with poll() and select()

@ poll() and select() have a design problem:
o Typically, set of FDs monitored by application is static
@ (Or set changes only slowly)

o But, kernel doesn’'t remember monitored FDs between calls
@ = Info on all FDs must be copied back & forth on each call

@ epoll improves performance by fixing this design problem

e Kernel maintains a persistent set of FDs that application is
interested in

e Application can incrementally change “interest list”

@ epoll cost scales according to number of 1/O events
e Much better performance when monitoring many FDs!

o Signal-driven 1/0O scales similarly, for same reasons

[TLPI §63.4.5]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-33 §7.5

Outline
7 Alternative 1/O Models 7-1
7.6 The epoll API 7-34
Overview

o Like select() and poll(), epoll can monitor multiple FDs

@ epoll returns readiness information in similar manner to poll()

@ Two main advantages:
e epoll provides much better performance when monitoring
large numbers of FDs (see TLPI §63.4.5)

e epoll provides two notification modes: level-triggered
and edge-triggered
e Default is level-triggered notification

e select() and poll() provide only level-triggered notification
o (Signal-driven I/O provides only edge-triggered notification)

@ Linux-specific, since kernel 2.6.0

[TLPI §63.4]
7-36 §7.6

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models

epoll instances

Central data structure of epoll APl is an epoll instance
@ Persistent data structure maintained in kernel space
o Referred to in user space via file descriptor
@ Can (abstractly) be considered as container for two lists:
o Interest list: list of FDs to be monitored

o Ready list: list of FDs that are ready for 1/0
@ Ready list is (dynamic) subset of interest list

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-37 §7.6

epoll APls

The key epoll APIs are:

@ epoll_create(): create a new epoll instance and return FD
referring to instance

@ FD is used in the calls below

@ epoll_ctl(): modify interest list of epoll instance
o Add FDs to/remove FDs from interest list

o Modify events mask for FDs currently in interest list

@ epoll_wait(): return items from ready list of epoll instance

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-38 §7.6

epoll kernel data structures and APls

User space Kernel space

I
I
I
I
File descriptor from !

S -
epoll_create() refers to epoll instance

Interest list

I

| | |

: | |

" .| events | data :

) I
Populated/modified | : <
by calls to : - \SEER
epoll_ctl() I | Al A

! | | AN\ \

I ‘ ‘ \t\ \\

: | Populated by kernel AN \

| . based oninterest list |) |

| : and I/O events o | I'

: | ‘ I ! /
I I /7y /

' [. Ly /

: ‘ Ready list IR y
| o d

(subset of) events + data : ! Referencesto--~ 1,7 _~ g
| . . ~
returned by calls to - : ‘ entries in | _/—r)‘ -
epoll_wait() I : interest list |~ :
: L - - - - - __ _
Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-39 §7.6

Creating an epoll instance: epoll_create()

#include <sys/epoll.h>
int epoll_create(int size);

@ Creates an epoll instance
@ size:
e Since Linux 2.6.8: serves no purpose, but must be > 0

o Before Linux 2.6.8: an estimate of number of FDs to be
monitored via this epoll instance

@ Returns file descriptor on success, or -1 on error

e When FD is no longer required, it should be closed via
close()

@ Since Linux 2.6.27, epoll_createl() provides improved API

e See the man page

[TLPI §63.4.1]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-40 §7.6

Modifying the epoll interest list: epoll_ctl()

#include <sys/epoll.h>
int epoll_ctl(int epfd, int op, int f£d,
struct epoll_event *ev);

©

Modifies the interest list associated with epoll FD, epfd

©

fd: identifies which FD in interest list is to have its settings
modified

e E.g., FD for pipe, FIFO, terminal, socket, POSIX MQ, or
even another epoll FD

o (Can't be FD for a regular file or directory)
@ op: operation to perform on interest list

o ev: (Later)

[TLPI §63.4.2]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-41 §7.6

epoll_ctl() op argument

The epoll_ctl() op argument is one of:
@ EPOLL_CTL_ADD: add fd to interest list of epfd
e ev specifies events to be monitored for fd

o If fd is already in interest list = EEXIST

@ EPOLL CTL_MOD: modify settings of fd in interest list of epfd
e ev specifies new settings to be associated with fd

o If fd is not in interest list = ENOENT

@ EPOLL CTL DEL: remove fd from interest list of epfd
e Also removes corresponding entry in ready list, if present

ev is ignored

If fd is not in interest list = ENOENT

Closing an FD automatically removes it from all epoll
interest lists

(7]

(%)

o /\ But see later! Manual deletion is sometimes required

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-42 §7.6

The epoll_event structure

epoll_ctl() ev argument is pointer to an epoll_event structure:

struct epoll_event {

uint32_t events; /* epoll events (bit mask) */
epoll_data_t data; /* User data */

T

typedef union epoll_data {
void *ptr; /* Pointer to user-defined data */
int fd; /* File descriptor */
uint32_t u32; /* 32-bit integer */
uint64_t u64; /* 64-bit integer */

} epoll_data_t;

@ ev.events: bit mask of events to monitor for fd
o (Similar to events mask given to poll())

@ data: info to be passed back to caller of epoll_wait() when
fd later becomes ready

e Union field: value is specified in one of the members

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-43 §7.6

Example: using epoll_create() and epoll_ctl()

int epfd;
struct epoll_event ev;

epfd = epoll_create (5);
ev.data.fd = fd;

ev.events = EPOLLIN; /* Monitor for input available */
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-44 §7.6

Outline

7 Alternative 1/O Models 7-1

7.7 epoll events 7-45

Wiaiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,
int maxevents, int timeout);

@ Returns info about ready FDs in interest list of epoll
instance of epfd

@ Blocks until at least one FD is ready

@ Info about ready FDs is returned in array evlist

e l.e., can get information about multiple ready FDs with one
epoll_wait() call

o (Caller allocates the evlist array)

@ maxevents:. size of the evlist array

[TLPI §63.4.3]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-46 §7.7

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,
int maxevents, int timeout);

@ timeout specifies a timeout for call:

e -1: block until an FD in interest list becomes ready

e 0: perform a nonblocking “poll” to see if any FDs in
interest list are ready

e > 0: block for up to timeout milliseconds or until an FD in
interest list becomes ready

@ Return value:
e > 0: number of items placed in evlist
@ 0: no FDs became ready within interval specified by timeout

e -1: an error occurred

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-47 §7.7

Wiaiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,
int maxevents, int timeout);

@ Info about multiple FDs can be returned in the array evlist

@ Each element of evlist returns info about one file descriptor:
e events is a bit mask of events that have occurred for FD
e data is ev.data value currently associated with FD in the
interest list

@ NB: the FD itself is not returned!

o Instead, we put FD into ev.data.fd when calling epoll_ctl(),
so that it is returned via epoll_wait()

@ (Or, put FD into a structure pointed to by ev.data.ptr)

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-48 §7.7

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,
int maxevents, int timeout);

o ul If > maxevents FDs are ready, successive epoll_wait()
calls round-robin through FDs

o Helps prevent file descriptor starvation

o sl In multithreaded programs:

o One thread can modify interest list (epoll_ctl()) while
another thread is blocked in epoll_wait()

o epoll_wait() call will return if a newly added FD becomes
ready

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-49 §7.7

epoll events

Following table shows:

@ Bits given in ev.events to epoll_ctl()

@ Bits returned in evlist[].events by epoll_wait()

Bit epoll_ctl()? | epoll_wait()? | Description

EPOLLIN °) Normal-priority data can be read

EPOLLPRI ° ° High-priority data can be read

EPOLLRDHUP ° ° Shutdown on peer socket

EPOLLOUT) ° Data can be written

FPOLLONESHOT o D|s<:=1t.)le .monltorlng after event
notification

EPOLLET ° Employ edge-triggered notification

EPOLLERR ° An error has occurred

EPOLLHUP ° A hangup occurred

@ Other than EPOLLOUT and EPOLLET, bits have same meaning as similarly named
poll() bit flags

[TLPI §63.4.3]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-50 §7.7

Example: altio/epoll input.c

./epoll_input file...

@ Monitors one or more files using epoll API to see if input is
possible

@ Suitable files to give as arguments are:
o FIFOs

e Terminal device names

e (May need to run sleep command in FG on the other
terminal, to prevent shell stealing input)

e Standard input
@ /dev/stdin

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-51 §7.7

Example: altio/epoll_input.c (1)

#define MAX_BUF 1000 /* Maz. bytes for read() */
#define MAX_EVENTS 5
/* Maxz. number of events to be returned from
a single epoll_wait () call */

int epfd, ready, fd, s, j, numOpenFds;
struct epoll_event ev;

struct epoll_event evlist[MAX_EVENTS];
char buf [MAX_BUF];

epfd = epoll_create(argc - 1);

@ Declarations for various variables

@ Create an epoll instance, obtaining epoll FD

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-52 §7.7

Example: altio/epoll_input.c (2)

for (j = 1; j < argc; j++) {
fd = open(argv[jl, O_RDONLY);
printf ("Opened \"%s\" on fd %d\n", argv[jl, £fd);

ev.events = EPOLLIN;

ev.data.fd = £d;

epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);
}

numOpenFds = argc - 1;

@ Open each of the files named on command line

@ Each file is monitored for input (EPOLLIN)

fd placed in ev.data, so it is returned by epoll_wait()
Add the FD to epoll interest list (epoll_ctl())

@ Track the number of open FDs

e ©

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-53 §7.7

Example: altio/epoll_input.c (3)

while (numOpenFds > 0) {
printf ("About to epoll_wait()\n");
ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);

if (ready == -1) {
if (errno == EINTR)
continue; /* Restart <f interrupted
by signal */
else

errExit ("epoll_wait");
}
printf ("Ready: %d\n", ready);

@ Loop, fetching epoll events and analyzing results
@ Loop terminates when all FDs has been closed

@ epoll_wait() call places up to MAX_EVENTS events in evlist

e timeout == -1 = infinite timeout

@ Return value of epoll_wait() is number of ready FDs

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-54 §7.7

Example: altio/epoll_input.c (4)

for (j = 0; j < ready; j++) {

printf (" fd=%d; events: Ys¥%s%s\n", evlist[j].data.fd,
(evlist[j].events & EPOLLIN) ? "EPOLLIN " HEN
(evlist[j].events & EPOLLHUP) ? "EPOLLHUP " : "",
(evlist[j].events & EPOLLERR) 7 "EPOLLERR " : "");

if (evlist[j]l.events & EPOLLIN) {

s = read(evlist[j].data.fd, buf, MAX_BUF);
printf (" read %d bytes: %.*s\n", s, s, buf);

} else if (evlist[j]l.events & (EPOLLHUP | EPOLLERR)) {
printf (" closing fd %d\n", evlist[j].data.fd);
close(evlist[j].data.fd);
numOpenFds - -;

@ Scan up to ready items in evlist
@ Display events bits

o If EPOLLIN event occurred, read some input and display it on stdout
e %.*s = print string with field width taken from argument list (s)

@ Otherwise, if error or hangup, close FD and decrements FD count

o Code correctly handles case where both EPOLLIN and EPOLLHUP are
set in evlist[j].events

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-55 §7.7

Exercises

©Q Write a client ([template: altio/ex.is_chat_cl.c]) that
communicates with the TCP chat server program, is_chat_sv.c.
The program should be run with the following command line:

./is_chat_cl <host> <port> [<nickname >]

The program should create a connection to the server, and then use
the epoll APl to monitor both the terminal and the TCP socket for
input. All input that becomes available on the socket should be written
to the terminal and vice versa.

e Each time the program sends input from the terminal to the
socket, that input should be prepended by the nickname supplied
on the command line. If no nickname is supplied, then use the
string returned by getlogin(3). (snprintf(3) provides an easy way
to concatenate the strings.)

@ The program should terminate if it detects end-of-file or an error
condition on either file descriptor.

o Calling epoll_wait() with maxevents==1 will simplify the code!

e Bonus points if you find a way to crash the server (reproducibly)!

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-56 §7.7

Exercises

@ Write the chat server ([template: altio/ex.is_chat_sv.c|).
Note the following points:

@ The program should take one command-line argument: the port
number to which it should bind its listening socket.

@ The program should accept and handle multiple simultaneous
client connections. Input read from any client should be
broadcast to all other clients.

@ Use the epoll APl to manage the file descriptors.

@ You should use nonblocking file descriptors to ensure that the
server never blocks when accepting connections or when reading
or writing to clients.

@ When the server detects end-of file or an error (other than
EAGAIN) while reading or writing on a client connection, it should
close that connection. (Remember that closing a file descriptor
automatically removes it from any epoll interest lists of which it
is a member.)

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-57 §7.7

Exercises

© Write a program ([template: altio/ex.epoll_pipes.c|) which
performs the same task as the altio/poll_pipes.c program, but
uses the epoll API instead of poll().
Hints:

o After writing to the pipes, you will need to call epoll_wait() in a
loop. The loop should be terminated when epoll_wait() indicates
that there are no more ready file descriptors.

o After each call to epoll_wait(), you should display each ready
pipe read file descriptor and then drain all input from that file
descriptor so that it does not indicate as ready in future calls to
epoll_wait().

@ In order to drain a pipe without blocking, you will need to make
the file descriptor for the read end of the pipe nonblocking.

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-58 §7.7

Outline

7 Alternative 1/O Models 7-1

7.8 epoll: edge-triggered notification 7-59

Edge-triggered notification

o By default, epoll provides level-triggered (LT) notification
o Tells us whether an 1/O operation can be performed on

FD without blocking

o Like poll() and select()

e EPOLLET provides edge-triggered (ET) notification

e Has |/O activity occurred since epoll_wait() last
notified about this FD?

@ Or, if no epoll_wait() since FD was added/modified by
epoll_ctl(), then: is FD ready?

@ Example:

struct epoll_event ev;

ev.data.fd = fd

ev.events = EPOLLIN | EPOLLET;
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

[TLPI §63.4.6]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-60 §7.8

Edge-triggered notification

@ lllustration of difference between LT and ET notification:
@ Monitoring a socket for input possible (EPOLLIN)

Q@ Input arrives on socket

© We call epoll_wait(), which informs us that FD is ready
o We perhaps consume some (but not all) available input

@ No further input arrives on socket
Q@ We call epoll_wait() again
@ LT notification: second epoll_wait() would (again) report
FD as ready

e Because outstanding data is still available for reading

e ET notification: second epoll_wait() would not report FD
as ready

o Because no 1/0 activity occurred since previous
epoll_wait()

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-61 §7.8

Uses for edge-triggered notification

@ Can be more efficient: application is not repeatedly
reminded that FD is ready
@ Example: application that (periodically) generates data to
be written to a socket
e Application does not always have data to write
o Application monitors socket for writability (EPOLLOUT)
e Application is also monitoring other FDs for |/O possible
o At some point, socket is full (output not possible)
o Peer drains some data, socket becomes writable
o LT notification: every epoll_wait() would (immediately)
wake and say FD is writable

o ET notification: only first epoll_wait() would say FD is
writable

e Application could cache that info for later action (e.g.,
when data is generated)

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-62 §7.8

Edge-triggered notification provides an optimization

@ Scenario: multiple threads/processes are epoll_wait()-ing on
same epoll FD

o E.g., epoll FD is monitoring listening socket

o LT notification: all waiters are woken up when connection
request arrives
e ET notification: only one waiter is woken up
@ Avoids thundering herd problem

o Code examples: altio/multithread_epoll_wait.c,
altio/epoll_flags_fork.c

e The EPOLLEXCLUSIVE flag provides a similar behavior in
some scenarios when using level-triggered notification

@ Since Linux 4.5

o See epoll_ctl(2) and altio/epoll_flags_fork.c

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-63 §7.8

Edge-triggered notification and EPOLLONESHOT

@ Scenario: monitoring socket for input available with
EPOLLET

e Assumption: we want to know when input is available, but
don’t want to read it yet

@ (So, we use EPOLLET to avoid repeated notifications)

@ New input keeps appearing = ET notification keeps
notifying
o Really, we needed only first notification

@ Solution: EPOLLONESHOT

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-64 §7.8

One-shot monitoring: EPOLLONESHOT

@ Specifying EPOLLONESHOT in events causes FD to be
reported just once by epoll_wait()

@ FD is then marked inactive in interest list

@ FD remains in interest list, and can be reactivated using
epoll_ctl(EPOLL_CTL_MOD)

e Continuing previous example: reenable notification after
draining input from socket

[TLPI §63.4.3]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-65 §7.8

Using edge-triggered notification

e Normally employed with nonblocking 1/0

o Can’t monitor “I/O level”, so must do nonblocking |/O
calls until no more /0O is possible

o Otherwise: risk blocking when doing |/O
o Beware of FD starvation

e Scenarios where responding to a busy FD leaves other ready
FDs starved of attention

o (Starvation scenarios can also occur with level-triggered
notification)

o See TLPI §63.4.6

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-66 §7.8

Exercises

The altio/i_epoll.c program can be used to perform epoll monitoring and file 1/0O
operations on the objects named in its command-line arguments. The program is
interactive, and supports the following commands:

p [<timeout>]
Do epoll_wait() with millisecond timeout (default: O0)
e <fd> [<flags>]
Modify epoll settings of <fd>; <flags> can include:
’r’ - EPOLLIN
>w’ - EPOLLOUT
e’ - EPOLLET
>0’ - EPOLLONESHOT
If no flags are given, disable <fd> in the interest list
r <fd> <size>
Blocking read of <size> bytes from <fd>
R <fd> <size>
Nonblocking read of <size> bytes from <fd>
w <fd> <size> [<char>]
Blocking write of <size> bytes to <fd>; <char> is character
to write (default: ’x’)
W <fd> <size> [<char>]
Nonblocking write of <size> bytes to <fd>

Each command-line argument has the form <path>[:<flags>] (to open a file) or
sh<host>J,<port>[:<flags>] (to connect a socket to a specified host/port). <flags> is

as described above, and defaults to “r". (If testing with sockets, you will find the
command ncat -1 <port> useful, in order to create a server that you can connect to.)

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-67 §7.8

Exercises

The following exercises are intended to demonstrate the effect of the EPOLLET and
EPOLLONESHOT flags.

@ In separate windows, create two FIFOs and use cat to write to each FIFO:

mkfifo x
cat > x

mkfifo y
cat > y

Q Run the [_epoll program, using it to monitor both FIFOs for reading, specifying the
EPOLLET flag for the FIFO y; note the file descriptor numbers used for each FIFO:

./i_epoll x:r y:re

Q Type some input into both cat commands, and then use the “p” command to
perform an epoll_wait():

i_epoll> p

You should find that both file descriptors report as ready for reading (EPOLLIN).

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-68 §7.8

Exercises

0 Enter the “p” command again. You should find that only the FIFO x reports
EPOLLIN. (y does not report as ready because no new input has appeared on the
FIFO.)

Q Type some input into the cat command that is writing to the FIFO y, and once
more use the “p” command to perform an epoll_wait(). You should find that both
FIFOs report EPOLLIN. (y reports as ready again because new input has appeared

on the FIFO.)

© Switch the monitoring of the FIFO y to use EPOLLET and EPOLLONESHOT with the
command "e <fd> reo".

)

Type some input into the FIFO y, and then use the “p"” command to perform an
epoll_wait(). You should find that both x and y report EPOLLIN.

0 Type some more input into the FIFO y, and again use the “p” command to perform
an epoll_wait(). You should find that y does not report as ready (because, after it
reported as ready in the previous step, it was disabled in the interest list by
EPOLLONESHOT).

© Reenable the FIFO y in the interest list using the command "e <fd> re" and again

use the “p” command to perform an epoll_wait(). You should find that y reports
EPOLLIN.

@ Try any other experiments you might think of!

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-69 §7.8

Outline

7 Alternative 1/O Models 7-1

7.9 epoll: API quirks 7-70

epoll and duplication of file descriptors

@ Entries in epoll interest list are associated with combination
of file descriptor and open file description

e Not just FD alone

e /\ Lifetime of interest list entry == lifetime of OFD
e Can provide some surprises when FDs are duplicated...

[TLPI §63.4.4]

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-72 §7.9

epoll and duplication of file descriptors

@ Suppose that fd in code below refers to a socket...

ev.events = EPOLLIN;

ev.data.fd = fd

epoll_ctl (epfd, EPOLL_CTL_ADD, fd, &ev);
newfd = dup(£fd);

close (fd) ;

epoll_wait (epfd, ...);

@ What happens if some input now arrives on the socket?

@ epoll_wait() might still return events for registration of fd

o Because open file description is still alive and present in
interest list

@ OFD is kept alive by newfd

o /\ Notifications return data given in registration of fd'!!

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-73 §7.9

epoll and duplication of file descriptors

@ Analogous scenarios possible with fork():

ev.events = EPOLLIN;
ev.data.fd = fd
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

if (fork() == 0) {

/* Child continues, does not close ’fd’ */
} else {

close (fd);

epoll_wait (epfd, ...);
}

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-74 §7.9

epoll and duplication of file descriptors

o /\ Can't EPOLL_CTL_DEL fd after close()
e = EBADF
@ Must either:

o Close duplicate FDs

e /\ But you may not know about duplicate if it was created
by a library function that used dup() or fork()

e Or manually EPOLL_CTL_DEL fd before closing it

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-75 §7.9

Outline

7 Alternative 1/O Models 7-1

7.10 Event-loop programming 7-76

Event-loop programming

e select()/poll()/epoll lend themselves to event-loop
programming
e l.e., program just sits in a loop, waiting on events from file
descriptors

@ Monitored FDs can include pipes, sockets, terminals,
devices, inotify, and even other epoll instances

e Events are processed synchronously

@ Problem: some other events of interest are not
(traditionally) synchronous/aren’'t monitorable via FDs:

e Signals

e Timer expirations

e |IPC synchronization events
o E.g., semaphore is incremented (sem_post())

o Process state transitions
e E.g., child process termination

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-78 §7.10

Event-loop programming

@ Linux solution: turn those other events into file descriptors:
Signals = signalfd()

Timers = timerfd (timerfd_create(), timerfd_settime(), ...)

Synchronization = eventfd()

Process state transitions = “PID" file descriptors

o PID FDs are returned by pidfd_open(),
clone()/clone3() CLONE_PIDFD

o Currently (Linux 5.4), only process-termination transitions
are notified

(]

@ Monitor FDs produced by those mechanisms along with
other FDs, using select()/poll()/epoll

Linux/UNIX IPC Programming ©2020, Michael Kerrisk Alternative |/O Models 7-79 §7.10

Notes

