
Outline

23 Alternative I/O Models 23-1
23.1 Overview 23-3
23.2 Nonblocking I/O 23-5
23.3 Signal-driven I/O 23-11
23.4 I/O multiplexing: poll() 23-14
23.5 Problems with poll() and select() 23-31
23.6 The epoll API 23-34
23.7 epoll events 23-45
23.8 epoll: edge-triggered notification 23-59
23.9 epoll: API quirks 23-70
23.10 Event-loop programming 23-76

Overview

Like select() and poll(), epoll can monitor multiple FDs
epoll returns readiness information in similar manner to poll()
Two main advantages:

epoll provides much better performance when monitoring
large numbers of FDs (see TLPI §63.4.5)
epoll provides two notification modes: level-triggered
and edge-triggered

Default is level-triggered notification
select() and poll() provide only level-triggered notification
(Signal-driven I/O provides only edge-triggered notification)

Linux-specific, since kernel 2.6.0

[TLPI §63.4]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-36 §23.6

epoll instances

Central data structure of epoll API is an epoll instance
Persistent data structure maintained in kernel space

Referred to in user space via file descriptor
Can (abstractly) be considered as container for two lists:

Interest list: list of FDs to be monitored
Ready list: list of FDs that are ready for I/O

Ready list is (dynamic) subset of interest list

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-37 §23.6

epoll APIs

The key epoll APIs are:
epoll_create(): create a new epoll instance and return FD
referring to instance

FD is used in the calls below
epoll_ctl(): modify interest list of epoll instance

Add FDs to/remove FDs from interest list
Modify events mask for FDs currently in interest list

epoll_wait(): return items from ready list of epoll instance

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-38 §23.6

epoll kernel data structures and APIs

events data ...

...

...

...

...

...

...

Interest list

Populated by kernel

based on interest list

and I/O events

References to

entries in

interest list

Ready list

epoll instance
File descriptor from

epoll_create() refers to

Populated/modified

by calls to

epoll_ctl()

(subset of) events + data

returned by calls to

epoll_wait()

User space Kernel space

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-39 §23.6

Creating an epoll instance: epoll_create()

include <sys/epoll.h>
int epoll_create (int size);

Creates an epoll instance
size:

Since Linux 2.6.8: serves no purpose, but must be > 0
Before Linux 2.6.8: an estimate of number of FDs to be
monitored via this epoll instance

Returns file descriptor on success, or -1 on error
When FD is no longer required, it should be closed via
close()

Since Linux 2.6.27, epoll_create1() provides improved API
See the man page

[TLPI §63.4.1]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-40 §23.6

Modifying the epoll interest list: epoll_ctl()

include <sys/epoll.h>
int epoll_ctl (int epfd , int op , int fd ,

struct epoll_event *ev);

Modifies the interest list associated with epoll FD, epfd
fd: identifies which FD in interest list is to have its settings
modified

E.g., FD for pipe, FIFO, terminal, socket, POSIX MQ, or
even another epoll FD

(Can’t be FD for a regular file or directory)

op: operation to perform on interest list
ev: (Later)

[TLPI §63.4.2]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-41 §23.6

epoll_ctl() op argument

The epoll_ctl() op argument is one of:
EPOLL_CTL_ADD: add fd to interest list of epfd

ev specifies events to be monitored for fd
If fd is already in interest list ⇒ EEXIST

EPOLL_CTL_MOD: modify settings of fd in interest list of epfd
ev specifies new settings to be associated with fd
If fd is not in interest list ⇒ ENOENT

EPOLL_CTL_DEL: remove fd from interest list of epfd
Also removes corresponding entry in ready list, if present
ev is ignored
If fd is not in interest list ⇒ ENOENT
Closing an FD automatically removes it from all epoll
interest lists

� But see later! Manual deletion is sometimes required
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-42 §23.6

The epoll_event structure

epoll_ctl() ev argument is pointer to an epoll_event structure:
struct epoll_event {

uint32_t events ; /* epoll events (bit mask) */
epoll_data_t data; /* User data */

};

typedef union epoll_data {
void *ptr; /* Pointer to user - defined data */
int fd; /* File descriptor */
uint32_t u32; /* 32- bit integer */
uint64_t u64; /* 64- bit integer */

} epoll_data_t ;

ev.events: bit mask of events to monitor for fd
(Similar to events mask given to poll())

data: info to be passed back to caller of epoll_wait() when
fd later becomes ready

Union field: value is specified in one of the members

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-43 §23.6

Example: using epoll_create() and epoll_ctl()

int epfd;
struct epoll_event ev;

epfd = epoll_create (5);

ev.data.fd = fd;
ev. events = EPOLLIN ; /* Monitor for input available */
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-44 §23.6

Outline

23 Alternative I/O Models 23-1
23.1 Overview 23-3
23.2 Nonblocking I/O 23-5
23.3 Signal-driven I/O 23-11
23.4 I/O multiplexing: poll() 23-14
23.5 Problems with poll() and select() 23-31
23.6 The epoll API 23-34
23.7 epoll events 23-45
23.8 epoll: edge-triggered notification 23-59
23.9 epoll: API quirks 23-70
23.10 Event-loop programming 23-76

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

Returns info about ready FDs in interest list of epoll
instance of epfd
Blocks until at least one FD is ready
Info about ready FDs is returned in array evlist

I.e., can get information about multiple ready FDs with one
epoll_wait() call
(Caller allocates the evlist array)

maxevents: size of the evlist array

[TLPI §63.4.3]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-46 §23.7

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

timeout specifies a timeout for call:
-1: block until an FD in interest list becomes ready
0: perform a nonblocking “poll” to see if any FDs in
interest list are ready
> 0: block for up to timeout milliseconds or until an FD in
interest list becomes ready

Return value:
> 0: number of items placed in evlist
0: no FDs became ready within interval specified by timeout
-1: an error occurred

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-47 §23.7

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

Info about multiple FDs can be returned in the array evlist
Each element of evlist returns info about one file descriptor:

events is a bit mask of events that have occurred for FD
data is ev.data value currently associated with FD in the
interest list

NB: the FD itself is not returned!
Instead, we put FD into ev.data.fd when calling epoll_ctl(),
so that it is returned via epoll_wait()

(Or, put FD into a structure pointed to by ev.data.ptr)

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-48 §23.7

Waiting for events: epoll_wait()

include <sys/epoll.h>
int epoll_wait (int epfd , struct epoll_event *evlist ,

int maxevents , int timeout);

� If > maxevents FDs are ready, successive epoll_wait()
calls round-robin through FDs

Helps prevent file descriptor starvation
� In multithreaded programs:

One thread can modify interest list (epoll_ctl()) while
another thread is blocked in epoll_wait()
epoll_wait() call will return if a newly added FD becomes
ready

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-49 §23.7

epoll events

Following table shows:
Bits given in ev.events to epoll_ctl()
Bits returned in evlist[].events by epoll_wait()

Bit epoll_ctl() ? epoll_wait() ? Description
EPOLLIN • • Normal-priority data can be read
EPOLLPRI • • High-priority data can be read
EPOLLRDHUP • • Shutdown on peer socket
EPOLLOUT • • Data can be written
EPOLLONESHOT • Disable monitoring after event

notification
EPOLLET • Employ edge-triggered notification
EPOLLERR • An error has occurred
EPOLLHUP • A hangup occurred

Other than EPOLLOUT and EPOLLET, bits have same meaning as similarly named
poll() bit flags

[TLPI §63.4.3]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-50 §23.7

Example: altio/epoll_input.c

./ epoll_input file ...

Monitors one or more files using epoll API to see if input is
possible
Suitable files to give as arguments are:

FIFOs
Terminal device names

(May need to run sleep command in FG on the other
terminal, to prevent shell stealing input)

Standard input
/dev/stdin

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-51 §23.7

Example: altio/epoll_input.c (1)

define MAX_BUF 1000 /* Max. bytes for read () */
define MAX_EVENTS 5

/* Max. number of events to be returned from
a single epoll_wait () call */

int epfd , ready , fd , s, j, numOpenFds ;
struct epoll_event ev;
struct epoll_event evlist [MAX_EVENTS];
char buf[MAX_BUF];

epfd = epoll_create (argc - 1);

Declarations for various variables
Create an epoll instance, obtaining epoll FD

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-52 §23.7

Example: altio/epoll_input.c (2)

for (j = 1; j < argc; j++) {
fd = open(argv[j], O_RDONLY);
printf (" Opened \"%s\" on fd %d\n", argv[j], fd);

ev. events = EPOLLIN ;
ev.data.fd = fd;
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);

}

numOpenFds = argc - 1;

Open each of the files named on command line
Each file is monitored for input (EPOLLIN)
fd placed in ev.data, so it is returned by epoll_wait()
Add the FD to epoll interest list (epoll_ctl())
Track the number of open FDs

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-53 §23.7

Example: altio/epoll_input.c (3)

while (numOpenFds > 0) {
printf ("About to epoll_wait ()\n");
ready = epoll_wait (epfd , evlist , MAX_EVENTS , -1);
if (ready == -1) {

if (errno == EINTR)
continue ; /* Restart if interrupted

by signal */
else

errExit (" epoll_wait ");
}
printf ("Ready: %d\n", ready);

Loop, fetching epoll events and analyzing results
Loop terminates when all FDs has been closed
epoll_wait() call places up to MAX_EVENTS events in evlist

timeout == -1 ⇒ infinite timeout
Return value of epoll_wait() is number of ready FDs

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-54 §23.7

Example: altio/epoll_input.c (4)

for (j = 0; j < ready ; j++) {
printf (" fd=%d; events : %s%s%s\n", evlist [j]. data.fd ,

(evlist [j]. events & EPOLLIN) ? " EPOLLIN " : "",
(evlist [j]. events & EPOLLHUP) ? " EPOLLHUP " : "",
(evlist [j]. events & EPOLLERR) ? " EPOLLERR " : "");

if (evlist [j]. events & EPOLLIN) {
s = read(evlist [j]. data.fd , buf , MAX_BUF);
printf (" read %d bytes: %.*s\n", s, s, buf);

} else if (evlist [j]. events & (EPOLLHUP | EPOLLERR)) {
printf (" closing fd %d\n", evlist [j]. data.fd);
close(evlist [j]. data.fd);
numOpenFds --;

}
}

}

Scan up to ready items in evlist
Display events bits
If EPOLLIN event occurred, read some input and display it on stdout

%.*s ⇒ print string with field width taken from argument list (s)
Otherwise, if error or hangup, close FD and decrements FD count
Code correctly handles case where both EPOLLIN and EPOLLHUP are
set in evlist[j].events

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-55 §23.7

Exercises

1 Write a client ([template: altio/ex.is_chat_cl.c]) that
communicates with the TCP chat server program, is_chat_sv.c.
The program should be run with the following command line:
./ is_chat_cl <host > <port > [<nickname >]

The program should create a connection to the server, and then use
the epoll API to monitor both the terminal and the TCP socket for
input. All input that becomes available on the socket should be written
to the terminal and vice versa.

Each time the program sends input from the terminal to the
socket, that input should be prepended by the nickname supplied
on the command line. If no nickname is supplied, then use the
string returned by getlogin(3). (snprintf(3) provides an easy way
to concatenate the strings.)
The program should terminate if it detects end-of-file or an error
condition on either file descriptor.
Calling epoll_wait() with maxevents==1 will simplify the code!
Bonus points if you find a way to crash the server (reproducibly)!

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-56 §23.7

Exercises

2 Write the chat server ([template: altio/ex.is_chat_sv.c]).
Note the following points:

The program should take one command-line argument: the port
number to which it should bind its listening socket.
The program should accept and handle multiple simultaneous
client connections. Input read from any client should be
broadcast to all other clients.
Use the epoll API to manage the file descriptors.
You should use nonblocking file descriptors to ensure that the
server never blocks when accepting connections or when reading
or writing to clients.
When the server detects end-of file or an error (other than
EAGAIN) while reading or writing on a client connection, it should
close that connection. (Remember that closing a file descriptor
automatically removes it from any epoll interest lists of which it
is a member.)

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-57 §23.7

Exercises

3 Write a program ([template: altio/ex.epoll_pipes.c]) which
performs the same task as the altio/poll_pipes.c program, but
uses the epoll API instead of poll().
Hints:

After writing to the pipes, you will need to call epoll_wait() in a
loop. The loop should be terminated when epoll_wait() indicates
that there are no more ready file descriptors.
After each call to epoll_wait(), you should display each ready
pipe read file descriptor and then drain all input from that file
descriptor so that it does not indicate as ready in future calls to
epoll_wait().
In order to drain a pipe without blocking, you will need to make
the file descriptor for the read end of the pipe nonblocking.

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-58 §23.7

Outline

23 Alternative I/O Models 23-1
23.1 Overview 23-3
23.2 Nonblocking I/O 23-5
23.3 Signal-driven I/O 23-11
23.4 I/O multiplexing: poll() 23-14
23.5 Problems with poll() and select() 23-31
23.6 The epoll API 23-34
23.7 epoll events 23-45
23.8 epoll: edge-triggered notification 23-59
23.9 epoll: API quirks 23-70
23.10 Event-loop programming 23-76

Edge-triggered notification

By default, epoll provides level-triggered (LT) notification
Tells us whether an I/O operation can be performed on
FD without blocking
Like poll() and select()

EPOLLET provides edge-triggered (ET) notification
Has I/O activity occurred since epoll_wait() last
notified about this FD?

Or, if no epoll_wait() since FD was added/modified by
epoll_ctl(), then: is FD ready?

Example:
struct epoll_event ev;
ev.data.fd = fd
ev. events = EPOLLIN | EPOLLET ;
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);

[TLPI §63.4.6]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-60 §23.8

Edge-triggered notification

Illustration of difference between LT and ET notification:
1 Monitoring a socket for input possible (EPOLLIN)
2 Input arrives on socket
3 We call epoll_wait(), which informs us that FD is ready

We perhaps consume some (but not all) available input
No further input arrives on socket

4 We call epoll_wait() again
LT notification: second epoll_wait() would (again) report
FD as ready

Because outstanding data is still available for reading
ET notification: second epoll_wait() would not report FD
as ready

Because no I/O activity occurred since previous
epoll_wait()

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-61 §23.8

Uses for edge-triggered notification

Can be more efficient: application is not repeatedly
reminded that FD is ready
Example: application that (periodically) generates data to
be written to a socket

Application does not always have data to write
Application monitors socket for writability (EPOLLOUT)

Application is also monitoring other FDs for I/O possible
At some point, socket is full (output not possible)
Peer drains some data, socket becomes writable
LT notification: every epoll_wait() would (immediately)
wake and say FD is writable
ET notification: only first epoll_wait() would say FD is
writable

Application could cache that info for later action (e.g.,
when data is generated)

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-62 §23.8

Edge-triggered notification provides an optimization

Scenario: multiple threads/processes are epoll_wait()-ing on
same epoll FD

E.g., epoll FD is monitoring listening socket
LT notification: all waiters are woken up when connection
request arrives
ET notification: only one waiter is woken up

Avoids thundering herd problem
Code examples: altio/multithread_epoll_wait.c,
altio/epoll_flags_fork.c
The EPOLLEXCLUSIVE flag provides a similar behavior in
some scenarios when using level-triggered notification

Since Linux 4.5
See epoll_ctl(2) and altio/epoll_flags_fork.c

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-63 §23.8

Edge-triggered notification and EPOLLONESHOT

Scenario: monitoring socket for input available with
EPOLLET

Assumption: we want to know when input is available, but
don’t want to read it yet

(So, we use EPOLLET to avoid repeated notifications)
New input keeps appearing ⇒ ET notification keeps
notifying

Really, we needed only first notification
Solution: EPOLLONESHOT

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-64 §23.8

One-shot monitoring: EPOLLONESHOT

Specifying EPOLLONESHOT in events causes FD to be
reported just once by epoll_wait()
FD is then marked inactive in interest list
FD remains in interest list, and can be reactivated using
epoll_ctl(EPOLL_CTL_MOD)

Continuing previous example: reenable notification after
draining input from socket

[TLPI §63.4.3]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-65 §23.8

Using edge-triggered notification

Normally employed with nonblocking I/O
Can’t monitor “I/O level”, so must do nonblocking I/O
calls until no more I/O is possible

Otherwise: risk blocking when doing I/O
Beware of FD starvation

Scenarios where responding to a busy FD leaves other ready
FDs starved of attention
(Starvation scenarios can also occur with level-triggered
notification)
See TLPI §63.4.6

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-66 §23.8

Exercises
The altio/i_epoll.c program can be used to perform epoll monitoring and file I/O
operations on the objects named in its command-line arguments. The program is
interactive, and supports the following commands:

p [<timeout >]
Do epoll_wait () with millisecond timeout (default : 0)

e <fd > [<flags >]
Modify epoll settings of <fd >; <flags > can include :
’r’ - EPOLLIN
’w’ - EPOLLOUT
’e’ - EPOLLET
’o’ - EPOLLONESHOT
If no flags are given , disable <fd > in the interest list

r <fd > <size >
Blocking read of <size > bytes from <fd >

R <fd > <size >
Nonblocking read of <size > bytes from <fd >

w <fd > <size > [<char >]
Blocking write of <size > bytes to <fd >; <char > is character
to write (default : ’x’)

W <fd > <size > [<char >]
Nonblocking write of <size > bytes to <fd >

Each command-line argument has the form <path>[:<flags>] (to open a file) or
s%<host>%<port>[:<flags>] (to connect a socket to a specified host/port). <flags> is
as described above, and defaults to “r”. (If testing with sockets, you will find the
command ncat -l <port> useful, in order to create a server that you can connect to.)

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-67 §23.8

Exercises

The following exercises are intended to demonstrate the effect of the EPOLLET and
EPOLLONESHOT flags.

1 In separate windows, create two FIFOs and use cat to write to each FIFO:

mkfifo x
cat > x

mkfifo y
cat > y

2 Run the i_epoll program, using it to monitor both FIFOs for reading, specifying the
EPOLLET flag for the FIFO y; note the file descriptor numbers used for each FIFO:

./ i_epoll x:r y:re

3 Type some input into both cat commands, and then use the “p” command to
perform an epoll_wait():

i_epoll > p

You should find that both file descriptors report as ready for reading (EPOLLIN).

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-68 §23.8

Exercises

4 Enter the “p” command again. You should find that only the FIFO x reports
EPOLLIN. (y does not report as ready because no new input has appeared on the
FIFO.)

5 Type some input into the cat command that is writing to the FIFO y, and once
more use the “p” command to perform an epoll_wait(). You should find that both
FIFOs report EPOLLIN. (y reports as ready again because new input has appeared
on the FIFO.)

6 Switch the monitoring of the FIFO y to use EPOLLET and EPOLLONESHOT with the
command "e <fd> reo".

7 Type some input into the FIFO y, and then use the “p” command to perform an
epoll_wait(). You should find that both x and y report EPOLLIN.

8 Type some more input into the FIFO y, and again use the “p” command to perform
an epoll_wait(). You should find that y does not report as ready (because, after it
reported as ready in the previous step, it was disabled in the interest list by
EPOLLONESHOT).

9 Reenable the FIFO y in the interest list using the command "e <fd> re" and again
use the “p” command to perform an epoll_wait(). You should find that y reports
EPOLLIN.

10 Try any other experiments you might think of!

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-69 §23.8

Outline

23 Alternative I/O Models 23-1
23.1 Overview 23-3
23.2 Nonblocking I/O 23-5
23.3 Signal-driven I/O 23-11
23.4 I/O multiplexing: poll() 23-14
23.5 Problems with poll() and select() 23-31
23.6 The epoll API 23-34
23.7 epoll events 23-45
23.8 epoll: edge-triggered notification 23-59
23.9 epoll: API quirks 23-70
23.10 Event-loop programming 23-76

epoll and duplication of file descriptors

Entries in epoll interest list are associated with combination
of file descriptor and open file description

Not just FD alone
� Lifetime of interest list entry == lifetime of OFD

Can provide some surprises when FDs are duplicated...

[TLPI §63.4.4]
Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-72 §23.9

epoll and duplication of file descriptors

Suppose that fd in code below refers to a socket...
ev. events = EPOLLIN ;
ev.data.fd = fd
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);
newfd = dup(fd);
close(fd);
epoll_wait (epfd , ...);

What happens if some input now arrives on the socket?
epoll_wait() might still return events for registration of fd

Because open file description is still alive and present in
interest list

OFD is kept alive by newfd
� Notifications return data given in registration of fd !!

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-73 §23.9

epoll and duplication of file descriptors

Analogous scenarios possible with fork() :
ev. events = EPOLLIN ;
ev.data.fd = fd
epoll_ctl (epfd , EPOLL_CTL_ADD , fd , &ev);
if (fork () == 0) {

/* Child continues , does not close ’fd’ */
} else {

close(fd);
epoll_wait (epfd , ...);

}

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-74 §23.9

epoll and duplication of file descriptors

� Can’t EPOLL_CTL_DEL fd after close()
⇒ EBADF

Must either:
Close duplicate FDs

� But you may not know about duplicate if it was created
by a library function that used dup() or fork()

Or manually EPOLL_CTL_DEL fd before closing it

Linux/UNIX System Programming ©2020, Michael Kerrisk Alternative I/O Models 23-75 §23.9

