
Exercises
1 Implement the following server [template: sockets/ex.is_shell_sv.c]:

is_shell_sv <port >

The server creates a socket that listens on the specified port and accepts client
requests containing shell commands. (� Each client sends just one command to
the server.) The server concurrently handles clients, executing each client’s
command, and passing the results back across the client’s socket.
Some hints:

To keep things simple, the server should obtain the client command by doing
a single read() (not my readLine() function!) of a large buffer, on the
(imperfect) assumption that that will retrieve the largest command the client
might send. A more sophisticated solution would involve the use of
shutdown(fd, SHUT_WR) (covered later) in the client, and a loop which
reads until end-of-file in the server.
Easy execution of a shell command:
execl("/bin/sh", "sh", "-c", cmd, (char *) NULL);
To have the command send stdout (and stderr !) to the socket, use dup2().
Checking all system calls for errors will save you a lot of grief (really!).
Need to write debugging output in the server? Open /dev/tty.
Even without writing a client (which is a following exercise), you can test the
server using ncat : ncat <host> <port-number> <<< "cmd"

Linux/UNIX System Programming ©2020, Michael Kerrisk Sockets: Internet Domain 22-59 §22.6

Exercises
Once you have a working server and client, you can make it more robust by checking the
following test cases:

1 while true; do ncat <host> <port> <<< ’false’; done
If we create lots of children, is the server reaping the zombies?

2 ncat <host> <port> <<< ’sleep 1’
Does this cause accept() in the server to fail with an error?

3 ncat <host> <port> <<< ’rubbish’
Does a suitable error message appear for the client?

4 ncat <host> <port> <<< ’ls nonexistent-file’
Does the error message from ls appear for the client?

5 ncat <host> <port> <<< "echo $(seq 1 1000000 | tr -d ’\012’)"
Does a very long command either get executed correctly or produce a suitable error
message from the server?

6 Does your server handle the possibility that fork() may fail, by sending a suitable
error message back to the client? Test this by modifying the code to replace the
call to fork() with code that simply yields the value -1.

Note: “<<<” is bash-specific syntax meaning take standard input from the following
command-line argument.

Linux/UNIX System Programming ©2020, Michael Kerrisk Sockets: Internet Domain 22-60 §22.6

